Definitions
Bertrand-Chebyshev theorem Tweet Definition of Bertrand-Chebyshev theorem Like Definition of Bertrand-Chebyshev theorem on Facebook
noun 
  1. (context, mathematics) the theorem that there is at least one prime number between n and 2n for every n>1, i.e.:
<math>\forall n\in\mathbb{N}:n>1\Rightarrow\exists p\in\mathbb{P}:n<p<2n</math>
Etymology: From surname of w:Joseph Louis Franíois Bertrand, Joseph Louis Franíois Bertrand, who conjectured the theorem and surname of w:Pafnuty Chebyshev, Pafnuty Chebyshev who proved it.


Supplemental Details:Sponsor an extended definition for Bertrand-Chebyshev theorem for as little as $10 per month. Click here to contact us.

     
  

 Find:
  Words Starting With:
  Words Ending With:
  Words Containing:
  Words That Match:

 
 Translate Into:
  
Dutch   French   German
  
Italian   Spanish
    Show results per page.

Browse the Dictionary
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

   
Dictionary content provided from Wiktionary.org under the GNU Free Documentation License
Allwords Copyright 1998-2024 All rights reserved.